

NEPP Processor Efforts 2018

Steven M. Guertin
steven.m.guertin@jpl.nasa.gov
818-321-5337
Jet Propulsion Laboratory / California Institute of Technology

Acknowledgment:

This work was sponsored by:

The NASA Electronic Parts and Packaging Program (NEPP)

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

© 2018 California Institute of Technology. Government sponsorship acknowledged.

Acronyms

AFRL	Air Force Research Laboratory
AMD	Advanced Micro Devices
ASU	Arizona State University
CMOS	Complimentary Metal Oxide Semiconductor
CPU	Central Processing Unit
DDR	Dual Data Rate
DIP	Dual Inline Package
DUT	Device Under Test
FET	Field Effect Transistor
FPGA	Field Programmable Gate Array
HPSC	High Performance Space Computer
GPU	Graphics Processing Unit
GSFC	Goddard Space Flight Center
ILP	Instruction-Level Parallelism
JPL	Jet Propulsion Laboratory
LANL	Los Alamos National Laboratory
LPP	Low Power Plus
MPSOC	Multiprocessor System on Chip
NASA	National Aeronautics and Space Administration
NEPP	NASA Electronic Parts and Packaging Program
NSWC	Naval Surface Warfare Center
os	Operating System
POP	Package on Package
SBU	Single Bit Upset
SEE	Single Event Effects
SEL	Single Event Latchup
SOC	System on a Chip
SW	Software
TBD	To Be Determined
TID	Total Ionizing Dose

Outline

- Intro/Processor Overview
- Processor & Microcontroller Tasks Review
- Partnering & Opportunities
- Trends and Test Methods
- Test Efforts Snapdragon
- RHBD Processors
- Test Efforts RAD5545
- Future Directions...

NEPP – Processors, Systems on a Chip (SOC), and Field Programmable Gate Arrays (FPGAs)

State of the Art COTS Processors

- •Sub 32nm CMOS, FinFETs, etc
- •Samsung, Intel, AMD

"Space" FPGAs

- Microsemi RTG4
- Xilinx MPSOC+
- •ESA Brave (future)
 •"Trusted" FPGA
 (future)

Graphics Processor Units (GPUs)

- •Intel, AMD, Nvidia
- Enabling data processing

COTS FPGAs

- Xilinx Kintex+
- Mitigation evaluation
- •TBD: Microsemi PolarFire

Radiation Hardened Processor Evaluation

- •BAE
- Vorago (microcontrollers)

Best
Practices
and
Guidelines

Partnering

- Processors: Navy Crane, BAE/NRO-
- •FPGAs: AF SMC, SNL, LANL, BYU,...
- Microsemi, Xilinx, Synopsis
- Cubic Aerospace

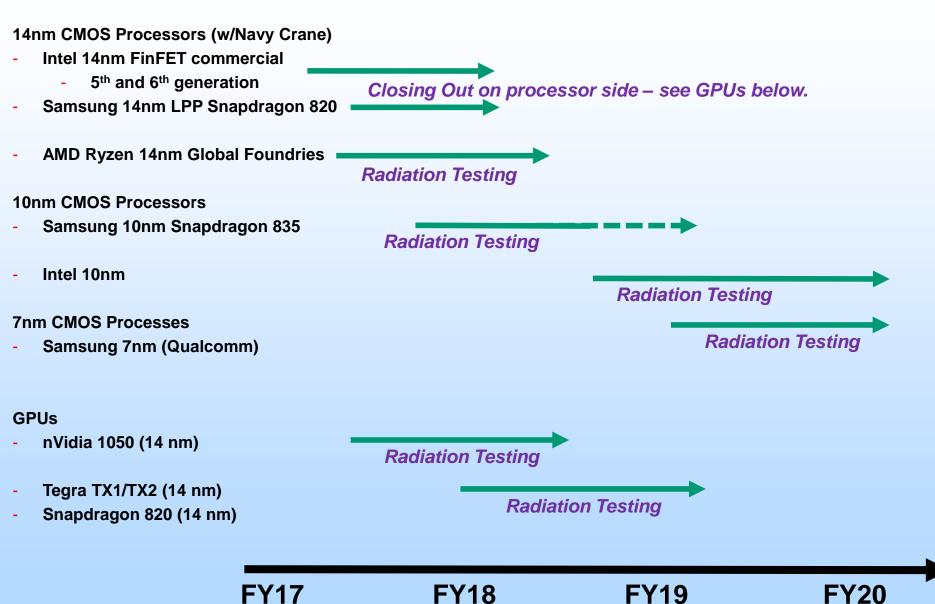
Potential future task areas:

artificial intelligence (AI) hardware, Intel Stratix 10

To be presented by Steven M. Guertin at NEPP Electronics Technology Workshop, June 26, 2017

Task Partnering

- Engaging in collaborative efforts:
 - Adam Duncan & NSWC Crane folks
 - Carl Szabo, Ed Wyrwas, Ted Wilcox, and Ken LaBel, GSFC
 - Jeff George, Aerospace Corporation
 - Larry Clark, ASU
 - Heather Quinn, LANL, and other members of the Microprocessor and FPGA Mitigation Working Group
 - Sergeh Vartanian and Greg Allen, JPL
 - Vorago Technologies collaborating on hardware/plans
 - Paolo Rech GPU/Applications, UFRGS
 - Intel informally
 - BAE Systems team forming
 - Qualcomm Cybersecurity Solutions team forming
- Looking for additional collaborators
 - Tester side are you testing processors?
 - Manufacturer side knowledge or hardware support
 - Application side specific applications…


Focus Categories

- Architecture to support evaluation and use of processor architectures throughout NASA, including processor types and FPGA/Soft processors
- Implementations to support evaluation and use of primary form-factors
- Fabrication Facilities/Technology to obtain information on fabrication facilities and related technology (e.g. Samsung 7nm, 3D, etc.)
- Application/Use Case to support ways of using devices for different NASA needs
- Develop data on specific devices/Methods for evaluation to support actual flight use, but to understand that in many cases the project will have to evaluate their own part (but we can provide guidance) and to provide independent validation or support the manufacturer providing data per NASA needs specifically looking at BAE RAD5545 and looking into Vorago (VA10820, ?) and Cobham (UT32M0R500).
- Manufacturers to have an up-to-date tool set for understanding devices from each manufacturer – critical because each MFR has it's own soup of documentation, hardware, and software tools or challenges, they also have their own architecture idiosyncrasies.
- Collaborations to engage manufacturers when they are available or can work with us, we want to harness this
- Test Method Development
- Guidelines and BOKs
- Recent work

Advanced Processors - Commercial

- collaborative with NSWC Crane, others

7

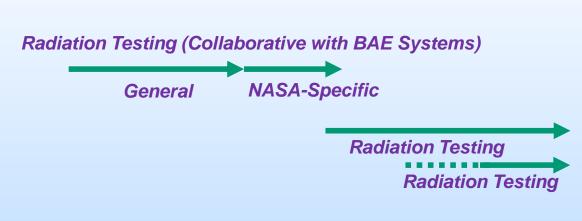
Advanced Processors – Flight/RHBD

- collaborative with BAE Systems, HSPC, others

Closeout

High Performance Space Processor (HPSC)

 Joint NASA-AFRL Program for RH multi-core processor


TBD – (track status)

RH Processor

- BAE Systems RAD5510/5545
 - Leverages P5040 architecture

Freescale Processors

- P2020 Communication Processor (w/Air Force)
- P5040 Network Processor

FY17 FY18 FY19 FY20

3

Microcontrollers & Soft Processors

- collaborative with Vorago, others

CubeSat/SmallSat Microcontrollers

No current plans

Automotive-Grade Microcontrollers

No current plans

Radiation-Hardened Microcontrollers

- Vorago VA10820 ARM Cortex-M0 MCU
- Vorago M4
- Cobham UT32M0R500

Test Review/Collaboration

Establishing Approach

Hard vs. Soft Core Processors

Soft/Hard ARM in Xilinx FPGA

Establishing Approach & Collaboration

FY17 FY18 FY19

Target Devices

- GPUs nVidia 1050
 - 12 nm TSMC, stacked die, 3D
 - "Standard test for proton facilities"
- Cell-phone/mobile SOCs
 - Qualcomm Snapdragon 835 10 nm Samsung
 - nVidia Tegra K1/K2 16 nm TSMC
- High Performance Processors Intel & AMD Ryzen 7
 - Intel 14 nm, AMD Global Foundaries 14 nm
 - Future: Intel 10 nm late in 2018
 - "Standard test for proton facilities"
- Microcontrollers Cobham UT32M0R500, Vorago VA10820
 - ARM, current-generation devices
- RHBD Devices
 - RAD5545 ~10 GOPs, PowerPC participating in testing
 - HPSC ~100 GOPs, significant power scaling, ARM monitoring development

Developed Test Architectures

- For potential users we have developed and are supporting knowledge base on the following devices and architectures
 - PIC family (simple Harvard architecture)
 - MSP family (Custom von-Neumann)
 - Atmel AT91 family (ARM)
 - PowerPC e500 (P2020, MPC56xx, P5020)
 - Sparc (Cobham UT699)
 - Intel x64/x86 (tests of various devices AMD and Intel similar)
 - Maestro (RAW architecture)
- Potential future architectures
 - MIPS
 - RISC-V
 - FPGA Soft/Hard Core Evaluations Approaches

What are we trying to do?

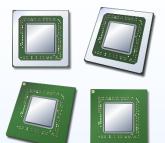
Primary Purpose

- Utilize processors as "bleeding edge" CMOS evaluations with goals of determining failure sensitivities and modes as well as to provide guidance for future flight project testing
- Evaluate emerging architectures for radiation tolerance such as multi-core, etc...
- Partner with NASA/Mil-Aero developments of processors to enhance qualification processes and provide independent assessments
- Provide selective radiation evaluation of small mission (aka CubeSat) electronics

What are we trying to do?

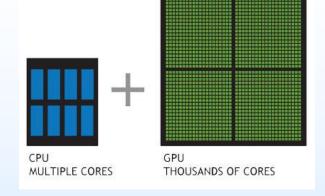
Secondary Purposes

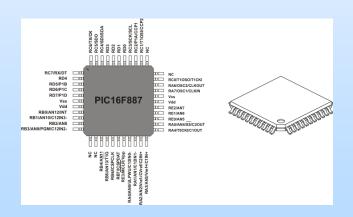
- Cross section vs. linear energy transfer (LET) information on device structures & Architectures
 - Test and qualification methods for processors
 - Build knowledge base of processor architectures
- Provide total ionizing dose (TID) test data and parts program information
- Gather information on various fabrication facilities
 - CMOS Nodes
 - On-shore vs. off-shore fabrication
- Resilience of commercial processors
 - Keep abreast of developing technology trends and how to perform appropriate radiation testing
- Device structure sensitivity to global device sensitivity


Processors – Traditional and SOC

Microprocessors

- Traditional central processing units CPUs
- Modern desktop processors
- Phone/Mobile processors
- Kinda hard to find plain microprocessors these days


- Almost all modern processors incorporate few to many heterogenous functions
- Not traditional SOC, but heading that way, and the definition of SOC is a disaster
 - "Smartphones and tablet don't just use "processors", they
 use what's called a System-on-a-Chip (or SoC)." http://www.ubergizmo.com/what-is/system-on-a-chip/
 - The multi-function chip in your phone is hijacking "SOC"
- Hybrid Stuff...
 - FPGAs (field programmable gate arrays) with built-in processor systems


Processors – GPUs and Microcontrollers

- Graphics Processing Units (GPUs) are high performance parallel processing machines
 - Some GPUs are available as CPUs...

- Microcontrollers
 - We will cover CubeSat and 32-bit microcontrollers here

- Where appropriate we are collaborating
 - Target devices
 - Architectures
 - Technology goals
 - Crossover items

Deliverables

- SOC Test Guideline fully released 3/2018
- Radiation test data/reports on:
 - P2020 SEE (single event effects) Heavy Ion & Proton
 - Intel 14nm including power device SEE failure related to firmware
 - AMD Ryzen 16nm
 - Samsung 14nm LPP/Snapdragon 820 SEE Heavy Ion & Proton
 - RAD55xx radiation data (testing soon…)
 - Samsung 10nm/Snapdragon 835 SEE (details TBD)
 - Vorago VA10820
 - GPU reports (see Ed Wyrwas' materials)

Snapdragon 835

- Samsung 10 nm
 - 8 Kyro 280 CPUs
 - Adreno 540 GPU
 - Hexago DSP

- Using Intrinsyc's 835 Mobile Hardware Development Kit – Android only, which is not desired...
- This board uses package-on-package (they essentially all do)
- No avenue to put Linux on the board.

Test Approach - Snapdragon 835

- Run codes under available operating systems
- Utilize debugging utilities (in this case the Android Debug Bridge)
- Run a suite of programs under the beam
 - Try to avoid when multiple programs are giving essentially the same data
- Compare the nominal debug utility output vs. that under the beam
 - If any deviation is observed in systems that are able to return data before a crash
- Note that the test efforts on the 820 showed that it is extremely difficult to expose to any number of heavy ions before a crash occurs.

The Snapdragon Profiler

CPU Performance:

- Branch Misses
- Cache Misses
- Cache Miss Ratio
- Cache Reference
- Clock
- Context Switches
- Core Frequency
- Core Load
- Core Utilization
- Cycles
- Cycles/Instruction
- Instructions
- Page Faults
- Task Clock

Memory Performance

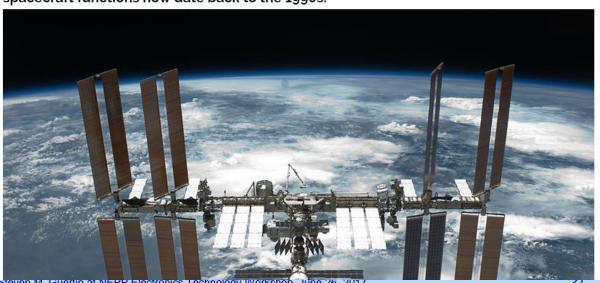
- DDR Frequency
- Utilization (bytes)

GPU Performance:

- Clocks/Second: Number of GPU clocks per seconds
- % CP Overhead
- % Bus Busy
- Frequency
- Temperature
- W Utilization
- Avg Bytes/Fragment
- Avg Bytes/Vertex
- Avg Memory Latency Cycles
- CP Data Read (Bytes/sec)
- Read Total (Bytes/sec)
- SP Memory Read(Bytes/Second)
- Texture Memory Read
- Vertex Memory Read
- VisStream Writes (Bytes/Sec)
- Write Total

Snapdragon Applications (see Patrick's stuff)

- All running under Android (looking for Linux alternatives... might change if another board can be found)
- Memory test (more effective than registers when running in OS)
- Matrix operations (transpose/multiplication)
- Image rotation application
- Evaluating some other applications, like Camera and Sensor, but lower priority


RHBD Processors

ZDNET (from 2012):

(https://www.zdnet. com/article/whytodays-spacecraftstill-run-on-1990sprocessors/)

 Now the article is 6 years old... and we're still using these processors... Many of the processors running today's spacecraft are the same that were found in our PCs and laptops. The only problem is that many of the processors powering essential spacecraft functions now date back to the 1990s.

RHBD Processors

And an SEE comment:

1 Comment

miked7891 • 3 years ago

They often use old tech because the process is larger. Todays small process semiconductors can be destroyed or change their state when hit by a cosmic ray or radiation. The larger older process IC's are much more resistant to this.

When the CPU or memory is mission critical, you don't want your data or program changed when it's hit with a stray cosmic ray. Especially in space, where there is very little shielding and no ionosphere to prevent it.

- But eventually we want to move to newer devices
 - Higher performance
 - Advanced architectures
- PowerPC → RAD5545; ARM → HPSC
- We are working to:
 - Evaluate equivalent functional units
 - Establish viable ways to test these SOCs
 - Explore different operating configurations to compare high performance, and compare to high reliability operations

RAD5545 Efforts

- Migrating existing P5020 and P2020 codes to be ready to explore RAD5545 capability
- Planning collaborative testing with BAE
- Focused on previous test methods
- But also augmenting with system-level performance testing...
- However, this is pushing the development of system-level performance evaluation.
 - We are looking into how to specify radiation performance in high performance systems with built-in fault tolerance.

Future Directions

- Continue working on 7 nm Samsung and 10 nm Intel devices as they become available.
- Continue efforts on GPUs, including embedded GPUs (such as in phones) and related machine learning algorithms and AI (See Ed Wyrwas' talk)
- Continue collaboration and evaluation of RHBD and COTS microcontrollers for things like CubeSats
- Migrate earlier methods from 1990's efforts on systems and recent FPGA efforts to evaluate COTS SEE performance based on evaluating individual functional blocks.
- Establish a way to functionally compare the RAD5545, RAD750, HPSC, and other flight processors to enable something like an apples-to-apples comparison of radiation performance against system processing capability.
- Compare the performance of soft-core and hard-core processors performing the same workloads.